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Methods of bifurcation theory and characteristics approximated by cubic polyno- 

mials ofa general form are used for qualitative investigation of a system which 
has interesting applications. Possible bifurcations and the behavior of bifurcation 
curves are considered. 

The considered system occurs in investigations of processes in electrical cir- 
cults containing negative nonlinear resistors [I], tunnel diode circuits [Z-4] and 
in problems of compressor surge with a linear approximation of throttling [5]. 
A complete qualitative investigation of such system with piecewise-linear apprvxi- 
mation is given in [6]. 

1. The rqurtfon of motfou. We consider the system 

$=y-ASP, 2J’=ff-h”-q=_Q (cr>O, h>O) (1.1) 

where ip (S) has a downward sloping section and is approximated by the cubic polynom- 
ial (p {z,) = a$ - 62s + cz with conditions 

a > 0, b > 0, c > 0, b2 - 3ac > 3a (1.2) 

The latter is equivalent to the condition min cp’ (z) < -1, for which various bi- 
furcations are possible in the system. For min cp’ (2) > -1 the appearance and dis- 

appearance of the eq~librium state are the only possible bif~actions, since over the 
whole plane P,’ + &’ # 0, 

2, Bquillbtium $tatee and their bifurcation, One or three equilibrium 
states are possible. In the case of a single equilibrium state we have a stable focal point 
(node). if at the point of intersection of isoclines we have cp’ (x) > --1, while in the 
opposite case the focal point is unstable. In the case of three equilibrium states we have 

a saddle point between focal points (nodes), 
The discriminant curve which separates in the kr-plane the region of three equilib- 

rium states from that of single equilibrium is determined by the condition of tangency 
of the straight line y = IT - h.,: to the curve y = cp (x) . It is defined by the para- 

metric equations 
0 = ‘p (X0) - s,cp’ (X0) = --2asa3 + b~,~ 

h = --rp’ (50) = -3a2,s + 2bz, - c 

(2.1) 

where x0 is the coordinate of the tangency point. 
From the condition cp” (x0) = 0 we have x0 = b / 3a which defines a cuspidal 

point of the discriminant curve. Its coordinates are 

hs = (l/s a)(b2 - 34 0; = b3 I 27a2 (2.2) 
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The discriminant curve lies to the left of the cuspidal point and is convex relative to 
the equilibrium states. Two equilibrium states of system (1.1). viz a focal point (node) 
and a complex saddle-node equilibrium state, correspond to the points of the discrimi- 
nant curve, while the cuspidal point is associated with the merging of the three equilib- 
rium states. 

Elimination of parameter x0 from (2.1) yields for the discriminant curve an equation 
of the form 

A ES 27a20a - l&d (c + 3L)G +4b%+4a(c +?p--byc -)q =o 

For k = 1 system (1.1) has a complex focal point on straight lines tangent to the 
discr~m~ant curve and directed into the region of h > 1. 

For the coordinates of equilibrium states we have the equation 

arc3 - bs2 + (c + h)J: - 0 = 0 (2.3) 

The condition p,’ + Q,’ = 0 yields 3azs - 2bx + e + 1 = 0, hence 

x1,2 = P/s4 fb + nz - 3a (c -t *)I, 21 < $2 CL4 

Substituting (2.4) into (2.3) for the equilibrium state at 5 = .i’r we obtain 

L 1 s 9ab (c + h) - 2b3 - 27a% - (b2 - 3ac - 3~2)‘~~ (6ac - (2.5) 

2ba - 3a + 9ak) = 0 

and for the eq~~brium state at zz = zs 

La ES 9ab (c -+ h) - 2b3 - 27a% .+- (b2 - 3ac - 3a)‘is X (2.6) 

(6ac - 2b2 - 3a + 9ah) = 0 

The straight lines (2.5) and (2.6) are tangent in the parameter plane k~ to the upper 
and lower branches of the dis~iminant curve and for h = 1 intersect at point ha = 
(2b2 + 3a - 6m) / 9a, 0, = b (c + 1) / 9u, while for h = & they intersect bran- 
ches of the discriminant curve 

h, = (P-- 3ac + a) / 4a CL 71 

Since coordinates (5) and (za) may define a focal point (h > I) or a saddle 
point (k < l), hence the focal or saddle parameter Pz’ + Qlt’ may change sign 
at the crossing of straight lines (2.5) and (2.6). 

For a complex focal point the first Liapunov parameter for system (1,l) is of the form 

PI 
a3 = (n / 4)(h - I)-“/$ I3a (h + 1) - 2 (b2 - 3ac)I (2.8) 

For h = k,,h,= (2 / $a) (bs - sac) - 1 parameter a3 vanishes, 
A complex focal point is stable for 

0). For h = h, (a8 
h > ha {a, ( 0) and unstable fork< li,(aa > 

= 0) the stability of a complex focal point is determined by the 
sign of the second Liapunov parameter a5 which can be calculated by the readily avail- 
able formula v] 

a5 = - S/a naa (h - I)“‘* < 0 (2.9) 

Note that for a, and a, the coordinate of eq~~brium state does not appear in formu- 
las (2.8) and (2.9) hence fur parameter values on the straight lines (2.5) and (2.6) for 
3L > 1 $the derived formulas apply equally to the left* (a;) and the right-hand (+) complex 
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focal points. 

13, BIkrvlor at tnfmty, Let us plot in the zg-plane a rectangle with sides 

parallel to coordinate axes and whose diagonal is the isocline ZJ = o - hx. For a fairly 

large rectangle the isocline 9 = sp (x), whose order ofin- 
crease is higher than that of a straight line,does not inter- 

sect its sides parallel to the y -axis,but intersects each of 
the other two sides once. With increasing t all trajectories 

of system (1.1) enter such rectangle. For any values of the 
system parameters infinity is unstable (Fig. 1). 

4. Qualitative determination of the pat- 

Fig. 1 
tern of phase space subdivision, 

4.1. Symmetry in the phase space. 
By transferring the coordinate origin of the point of inflection of the characteristic y = 

9 (r) we reduce system (1.1) to the form 

E’ = At + $-/ - uE3, T-j = 5 - $“g - 11 (4*X) 
A = (b2 - 3 UC) 3 a, 5 = (I - (1 / 27 a2) [9 ab (c +. 11) - 2 b3] 

Formula (4.1) implies that (a) if 5 = 0, the phase space of system (4.1) is symmetric 

with respect to the coordinate origin (the point of inflection of the characteristic), and 

(b) if straight lines q = 5, - hf and q = 5a - hE are symmetric with respect to the 

coordinate origin (al + 5, = O), the phase 
patterns for 4 and 4 are symmetric to each 

other about the inflection point of the char- 
acteristic. 

Owing to this it is possible to confine the 

analysis of the parameter space ha to its part 
lying either above or below the line of sym- 
metric patterns .& G 5 = 0. 

The discriminant curve, the straight lines 

of stability change Lt = 0 and L, = 0 
(for focal points .Q and G, respectively), 
and the line t, = 0 which passes through 

the intersection point of LI and L, are 
shown in Fig. 2. 

The subsequent analysis is carried out for 
values of parameters below the line of sym- 
metric patterns, 

4.2. The pattern of phase 

space subdivision and bifurca- 

tion related to parameter variation along the straight line of 
stability change of focal point 51. Let us examine the bifurcations and 

qualitative variation of the pattern of phase space subdivision with variation of parame- 
ters along the straight line Ll = 0. 

If h > h, , then as<0 and the complex focal point II is stable. Assuming that b2 - 

3 t%G - 3 a > 0 (see (2.4) ), we obtain from the formula for h3 and (2.7) that hs > hl . 
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Hence for these values of parameters system (1.1) has a single eq~lib~um state. If 1 
decreases beyond li, = A, , the sign of cz,and the stability of the complex focal point 
change (although the latter remains complex), and a stable limit cycle is generated at 
the focal point. This stable cycle remains unaffected by further decrease of h within 
the interval k < h < Xs, The value h = L1 corresponds to the tangency of straight 
line c - hx - y = 0 to the characteristic Y = rp (x). A saddle-node with an unstable 
nodal region (in the saddle-node (P,’ + f&’ = - ‘p’ (zO) - 1 > 0 appears in the phase 
plane. It can be verified that this occurs precisely inside the limit cycle for any charac- 
teristics which correspond to the particular selection of coefficients of q (xf , 

If for some approximations the saddle-node appears inside the cycle and for others 
outside the latter, then, because of continuity, a characteristic must exist for which the 
saddle-node occurs in the limit cycle. A saddle-node with an unstable nodal region can- 
not, however, occur in a stable limit cycle [B], 

Thus for any one specific approximation it is sufficient to know the relative disposition 
of the cycieand saddle-node. It was established by numerical methods that for system 
(1.1) with ap~o~mation cp (x) = 11s XS - Y x2 + 7x and parameters o = 4Va and h = 
7i4 (which corresponds to the equilibrium state of a complex focal point and a saddle- 

node) the cycle contains a saddle-node. Hence this applies to any cubic approximation. 
Further movement along the straight line L1 inside the region bounded by the discri- 

minant curve results in the splitting of the saddle-node into a saddle and an unstable 
node which is subsequently transformed into a focal point, Within the interval ho < 
h < al bifurcations of the equilibrium state are absent, and bifurcation of separatrices 
is inhibited by the sign of the saddle parameter. (loops of separatrices, if they occur. 
must be stable, but this is impossible, since at the saddle point the parameter PX’ + Qy’ 
is positive [S-J .) Consequently a phase space containing two complex focal points sym- 
metric with respect to the saddIe corresponds to point h = hs of intersection of the 
straight line L1 = 0 with the line of symmetric patterns (the cc-separatrices lead to a 
stable cycle which comprises all three stable states and the o-separatrices are formed 
by twists of unstable complex focal points. 

Note . Qualitatively the pattern of phase space subdivision into trajectories, deter- 
mined on the basis of the above inf~mation, is accurate only within the supplements 
even number of limit cycles, which may possibly be due to bunching of trajectories. 
This incompleteness cannot be eliminated in the subsequent analysis. 

4.3. The pattern of phase space subdivision and bifurcation 
related to parameter variation along the line of symmetric pat- 
terns. Let us consider bifurcations and phase space changes along the line of symmet- 
ric patterns L, = 0. If h > h, & is defined by formula (2.2) ), an unstable focal point 
(node) represents the only equilibrium state of the system, with an unstable infinity. A 
stable limit cycle exists around the focal point. The decrease of h along the straight 
line L, = 0 results in the rotation of line y = u - ?G around the equilibrium state at 
the inflection point of the characteristic y = q~ (3). For I = h, the straight line is tan- 
gent to the characteristic at the inflection point (L, = 0 intersects the discriminant 
curve at the cuspidal point). This results in a complex equilibrium state which with fur- 
ther decrease of h decomposes into three simple states, viz two unstable focal points 
(nodes) with a saddle point between these, Bifurcations of the equilibrium state do not 
occur in the interval ho < h < &* For h = h,, both focal poims become complex, and 



610 A.N.Bautin 

with further decrease of 3, they generate unstable limit cycles (the first focal parame- 
ter a, is positive). A phase space pattern with three limit cycles is obtained, the a-sepa- 
ratrices lead to a stable cycle which comprises all three equilibrium states, while the 

o- separatrices are formed by twists of unstable cycles which comprise stable focal points 

(Fig. 3 (9)). 

Fig. 3 

A further decrease of h in the interval 0 < h < h, does not lead to any change of 

the eq~~brium state stability, and for h = 0 cycles are absent (there exists then the 
integral straight Y = u which passes through all equilibrium states). Limit cycles can 

only vanish either by conversion into loops of separatrices or by merging with cycles 
newly created from such loops. It is significant that cycles around focal points and those 
which compise all three eq~librium states have different stabilities, Depending on the 

sign of the saddle parameter, only unstable cycles comprising equilibrium states may 
convert (and for some h = a+ are necessarily converted) into separatrix loops [8], These 
two loops (which appear simultaneously, because L, = 0 is the line of symmetric pat- 
terns) form a separatrix contour in the shape of an “eight” whose disintegration (with 
decreasing hj generates an unstable limit cycle comprising three equilibrium states, 
For some h = h* < h+ these limit cycles merge and vanish with decreasing a . 

4.4. The pattern of phase space subdivision and bifurcation 
related to parameter variation along the discriminant curve. 

Let us examine the bifurcations and changes of phase space patterns along the lower 
branch of the discriminant curve beginning at the cuspidal point h = hz, In the interval 
L < h < A2 we have a pattern containing an unstable focal point and a saddle-node 
with unstable nodal region inside the stable limit cycle (Fig. 3 (10)). Stability of the 
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focal point a changes with h decreasing beyond h = AI and, since aa > 0, that point 
generates an unstable limit cycle (Fig. 3 (9) ). To examine further bifurcations occurring 
for h tending to zero it is necessary, first of all, to determine the pattern for k = 0. 
This is readily obtained, since for A = 0 we have the integral straight line bt = o which 
passes through both equilibrium states (stable node and a saddle-node with stable nodal 
region). There are no limit cycles, and tha pattern is qualitatively equivalent to that 
shown in Fig. 3 (1) (the nodal region is hatched). For a saddle-node h, = 1 implies bi- 
furcation, For A< 1 the nodal region is stable (the saddle-node has two a-separatrices), 
far h > 1 it is unstable (the saddle-node has two w-separatrices), and for h = 1 the 
saddle-node degenerates (the characteristic equation has two zero roots) and the nodal 
region vanishes (the saddle-node has one a- and one w-separaaix). Within the interval 
0 < h < 1 the pattern of equilibrium states is retained and is similar to that shown in 
Fig. 3 (1). 

A qualitative determination of the pattern for h = 1 is essential for the examination 
of the sequence of bifurcations along the disniminant curve. As shown below, the in- 
crease of h beyond zero must unavoidably result in a two-limit cycle because of aajec- 
tory bunching. Such cycle comprises equilibrium states, but there are no means for the 
exact determination of parameters for which it occurs, Below we assume that limit cy- 
cles do not yet appear for h = 1 and that the pattern shown in Fig. 3 (2) applies (results 
related to the assumption of existence of limit cycles for h = 1 are presented subse- 
quently). 

For h increasing beyond li, = 1 the pattern is qualitatively equivaleht to that shown 
in Fig. 3 (3). An unstable nodal region of the saddle-node is generated (both a- separat- 
rices emerge in the direction 1c = - 1, and the o-separatrix enters in the direction 
X I= - h). The node becomes a focal point for II - cp’ (a)] a - 4 k < 0, where 
cp’ (XI) = I/a (62 - 3 ac - 4 A). 

Let us now compare the disposition of a- and o-separatrices in the patterns shown in 
Figs. 3 (9) and 3 (3). On the segment of the straight line x = n lying above the focal 
point we mark the points of its intersection with the a- and the o.separatrices (nearest 
to the saddle-node along the separatrix path). For the pattern shown in Fig, 3 (9) the 
trace of the o-separatrix on the line CC = z1 lies below the traces of a-separatrices, 
while for the pattern in Fig, 3 (3) it lies above the latter. The decrease of 1 must ne- 
cessarily lead to successive bifurcations associated with the merging of the olseparatrix 
trace on line 5 = zi with the trace of the al-separauix (emerging upward from the sad- 
dle-node) and of the c+separatrix (emerging downwa~)~ Since the saddle parameter 
P,’ + Qy’ = h - 4 for h > 1 is positive, the formation of the first loop (for I = a.@)) 
contracts to it unstable limit cycles [8] (Fig. 3 (8)). When the trace of the o-separattix 
lies between the traces of the a~- and c+separaaices, a closed contour is formed by the 
separaaix of the saddle-node (Fig. 3 (7)). A separatrix loop develops when traces of the 
o- and c+eparatrices coincide (for h = h(l) < 1L@)) (Fig. 3 (6) ) . Disintegration of 
this loop with decreasing h generates an unstable limit cycle which comprises both 
equi~brium states. yielding the pattern shown in Fig_ 3 (5), which has two Limit cycles 
between which there are no equilibrium states. Within the interval 1 < 2, < h(l) at cep 

tain h = h(O) limit cycles merge into a double semistable limit cycle (Fig. 3(d) and 
then vanish. The sequence of patterns along the lower branch of the discriminant curve 
is shown in Fig. 3. 
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4.5. The pattern of phase space subdivision and bifurcation 
in the region of three equilibrium states inside of the discrimi- 
nant curve, The discriminant curve defined by parametric equations (2.1) can be 
considered as the envelope of the set of straight lines o - Lo - F (z,,) = 0 lying in the 
ho -plane. The half-lines 

u - LX0 - ‘p (20) = 0, h < - ql’ (X0) (4.2) 

tangent to the discriminant curve at point li = - cp’ (CC,,) pass once through the region 
bounded by the line of symmetric patterns and the lower branch of the dis~iminant curve, 
when x0 is varied between the inflection point and the minimum of the characteristic 
cp fz) (for 6 I 3 a f .zo < (1 / 3 a) (b -j- v b* - 3 m)). In the parameter plane ha the 
motion along half-lines (4.2) from the tangency point corresponds for system (1.1) to a 
counterclockwise rotation of the isocline cr -- 1~ - .y = o about the saddle point which 
appears at point x I- x0 of splitting of the saddle-node into saddle and node. 

Let us consider the bifurcations generated by the motion along half-lines (4* 2) tangent 
to the discriminant curve in the interval b < 1 < hs , where bifurcations of equilibrium 
states, of separatrices, and of limit cycles are present. 

With decreasing a the saddle-node equilibrium state within a stable limit cycle splits 
into a saddle and an unstable node which with further decrease of h is transformed into 
a focal point (Fig. 5 (11) ),At intersection points of the considered half-line (4.2) with 
the straight lines L1 = 0 and L, = 0 the equilibrium states bifurcate as follows : with 
decreasing h unstable limit cycles are generated, first, at the focal point ~1 (Fig. 5 (lo)), 
then fromihe focal point xp (focal points become stable), which yields a pattern with 
three limit cycles* Since for h = 0 limit cycles are absent fy = o is the inte~als~aight 
line and the pattern is equivalent to that shown in Fig. 5 (1)). Hence, using a reasoning 
similar to that in Sect. 4.4. we find that for h tending to zero the following bifurcations 
of separatrices must exist : a separairix loop around the upper focal point and a “large 
loop” around the lower focal point with two equilibrium states within the latter. Since 
the saddle parameter (P,’ -I- Q?,’ = - cp’ (ta) - 1 = h - 1, where h is the coordinate 

Fig. 4 

of the tangency point of half-line 
(4.2) with the discriminant curve, 
separatrix loops can only be unstable, 
and their generation is accompa- 
nied by merging with (or conver- 
sely, emanation from) unstable li- 
mit cycles. Separatrix loops appear 
around focal points as the result of 
merging with them of unstable limir 
cycles emanating from focal points. 
Disinflation of a “large loop” 
formed by a,- and OX- separatrices 
of the saddle point are accompanied 
by the appearance of an unstable 
limit cycle which comprises all 
equilibrium states (the large loop 
cannot be the result of contraction 
to it of a stable limit cycle, since 
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this is inhibited by the sign of the saddle parameter [8]). For h = 0 cycles are absent, 
hence with further decrease of I the merging of a stable cycle with an unstable one 
must result in the emergence of a binary limit cycle followed by its disappearance. 
Bifurcation points on half-lines (4.2) associated with separatrix loops around the upper 
and lower focal points may either coincide or be separated by the bifurcation point cor- 
responding to the large loop. 

For half-lines (4.2) tangent to the lower boundary of the discriminant curve within 
the intervals (A @), k), (iL’l), A@)), (L@), h(l)) and (I, h(O)) bif~~tions are similar, how- 
ever their number decreases from interval to interval, because some of the bifurcations 
had already appeared along the path of the discriminant curve. 

Since the above bifurcations occur at straight lines which completely fill the region 
inside of the discriminant curve, there must exist continuous curves along which bifurca- 
tion takes place. Their initial and end points lie on the line of symmetric patterns and 
on the discriminant curve. All three bifurcation curves associated with the three kinds 
of separatrix loops intersect at point h = h+ on the line of symmetric patterns (Fig. 4). 
and end at points h = ht2), h = 51(l) and li = 1 of the discriminant curve. 

Fig. 5 
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Patterns with separatrix loops of the degenerated saddle-node must be considered as 
the degeneration of a separatrix loop lying around the upper focal point and contracted 

into the latter. The binary cycle curve passes through point k = h* of the line of sym- 

metric patterns and through point h. = h(O) of the discriminant curve to the left of the 
curve with the large loop. 

Since some of the bifurcation curves may intersect each other, the sequence of patterns 
and bifurcations can be qualitatively different for the various h-parameters along seg- 
ments of tangents lying inside the discriminant curve. 

4.6. The pattern of phase space subdivision and bifurcation 
outside the discriminant curve (in the region of single equilib- 
r i u m s pa c e ). Three patterns are possible here : an unstable focal point inside a sta- 
ble limit cycle, a stable focal point surrounded by two limit cycles, and a stable focal 

point (node) to which trajectories converge from infinity, The first of these exists at 

points outside the discriminant curve in the region between the straight line LI=O and 
the line of symmetric patterns (region [l] in Figs. 2 and 4). In the interval ?P) < h < A, 

the region of existence of two limit cycles adjoins a piece of the dis~iminant curve and 
the straight line LI = 0. A displacement in the interval h(O) < h < hl from the discri- 

minant curve (Figs, 3 (5) - 3 (9)) into the region of single equilibrium state results in 
the disappearance of the saddle-node equilibrium state, leaving two limit cycles around 

a stable focal point (the unstable limit cycle in Figs. 3 (6) - 3 (8) develops from the 

closed trajectory of the o-separatrix of the saddle node formed at the disappearance of 
the latter). In the interval hi < h < h, at transition from region .Ll < 0 to region 

LL > 0 (with decreasing c) a second unstable limit cycle (as > 0 for il <As) emerges 
from the focal point. The bif~cation curve associated with the merging of stable and 

unstable limit cycles begins at point P., = hs of straight line L1 = 0 (where a3 = 01 
and intersects the discriminant curve at h = h(O), thus separating a certain neighborhood 
of the discriminant curve and of the straight line L = 0 at whose points there exists 
one stable equilibrium state and two limit cycles (region @] in Figs. 2 and 4). At tran- 
sition from region L1 < 0 to region LI > 0 the stable cycle contracts for h > h, to the 

focal point (a3 < 0) , and we obtain a pattern without limit cycles (region P] in Figs. 
2 and 4). The boundary of the region free of limit cycles consists of a piece of the dis- 

criminant curve (for 0 Q h < k(O)), the curve of binary cycles (for $,(‘j < h < h3) , and 

the straight line Lr = 0 (for h > h,). 

6. Subdivinlon of the parameter apace, The subdivision of parameter 
space into regions of qualitatively different patterns on both sides of the line of symmet- 

ric patterns Lo -1 0 is shown in Fig. 4. The rough patterns associated with the various 
regions of phase space subdivisions are shown in Fig. 5 (denoted by previously used nu- 
merals). Separatrices and limit cycles are shown by heavy lines. unstable limit cycles 
by dash lines, and stable and unstable eq~librium states are denoted by black dots and 
small circles, respectively. The region of existence of three limit cycles is shaded in 

Fig. 4. 
The subdivision shown in Fig. 4 is based on the assumption made in Sub-Sect. 4.4 

about the absence of limit cycles in the pattern at point h = 1 of the discriminant 
curve. If that assumption is rejected, the binary cycle curve (the dash line in Fig. 4) 
intersects the discriminant curve at point h = h(o) < 1, and the regions I21 and P] 
associated with patterns (2) and (3) in Fig. 5 vanish in Fig. 4. 
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A nonlinear system of three differential equations with three parameters defining 

the dynamics of a search system for phase synchronization is considered. Quali- 
tative analysis of the system is carried out with the use of Liapunov functions, 

systems of matching, surfaces without contact, and local theory of bifurcation of 
multidimensional dynamic systems. It is established that the effective parameter 
range is determined by the bifurcation of the saddle separatrix loop. 

1. Introduction. We consider a system of three differential equations of the form 

cp: = y, y’=u-~$F(cp)--1, v’= ++ (1.1) 

where a, b and y are parameters of function j’ (cp)& (k > 2) , The system satis- 


